/
2. Fraud Reports

ЕСОЗ - публічна документація

2. Fraud Reports


Reports Logic

Based on current tables next data must be aggregated and analyzed:

  • Number of patients per doctor
  • Number of patients registered for the same phone number
  • Number and percentage of patients per doctor that have set offline authorization method
  • Number and percentage of patients per legal entity that have set offline authorization method

Using replicated tables from fraud data mart and BI tool the reports with outliers must be shown.

For now there are 3 reports are required - for autorization, doctors and phone_numbers.

Predefine views with aggregation

1. Doctor aggregation  

  • number of patients per doctor (total_patients_doctor)

doctors with patients_qty<= 10 are not taken into account.

Conditions: employee, declarations

  • employee.id=declarations.employee_id
  • employee.employee_type='DOCTOR'
  • employee.is_active=true
  • employee.status='APPROVED'
  • declarations.is_active=true
  • declarations.status='active'

Fields:

SOURCEFIELDNAMEDESCRIPTION
employeeparty_idparty_id
employeelegal_entity_idlegal_entity_id
declarationscount(person_id)patients_qtyqty patients by doctor (total till report date)
declarations

avg(qty_person_id_30)/

avg(qty_person_id_60)

patient_increase_30d

For each doctor calculate lifetime - (report_date-inserted_at)

If doctor lifetime <=90 days or avg(qty_person_id_60)=0 - then null 

if doctor lifetime >= 90 days and avg(qty_person_id_60)>0:

avg(qty_person_id_30) - average number of patients (new declarations) for a doctor for the last 30 days

avg(qty_person_id_60) - average number of patients (new declarations) for a doctor for 60 days before last 30 days

  • number and percentage of patients per doctor that have set offline authorization method (autorization_doctor)

doctors with patients_qty<= 10 are not taken into account.

Conditions:

  • employee.id=declarations.employee_id
  • declarations.person_id=presons.id
  • employee.division_id=divisions.id
  • employee.employee_type='DOCTOR'
  • employee.is_active=true
  • employee.status='APPROVED'
  • declarations.is_active=true
  • declarations.status='active'
  • divisions.addresses.{type:"RESIDINCE"}


Fields:

SOURCEFIELDNAMEDESCRIPTION
employeeparty_idparty_id
employeelegal_entity_idlegal_entity_id
divisions

residence_settlement_type

residence_settlement_type 


when type<>'CITY' then 'OTHER' else type
persons
count(authentication_methods.type='OFFLINE'.person_id)

offline_patients_qty

authentication_methods.type='OFFLINE'
personscount(authentication_methods.type='OFFLINE'.person_id)/count(person_id)ratio_offline_patients_qtyratio of patients with offline method of authorization within particular doctor 
personscount(person_id)patients_qtyqty patients by doctor (total till report date)

2. Patient aggregation  

Using 

  • number of patients with same phone number (patients_phonenumber)

phone numbers with patients_qty<= 1 are not taken into account.

The table recalculates on daily basis

Conditions:

  • declarations.person_id=presons.id
  • declarations.is_active=true
  • declarations.status='active'

Fields:

SOURCEFIELDNAMEDESCRIPTION
personsphones.{number}phone_number
personscount(id)patients_qty

$inserted_atreport_datethe date when calculated

3. Legal entity aggregation  

  • number and percentage of patients per legal_entity that have set offline authorization method (autorization_legal_entity)

legal entities with patients_qty<= 50 are not taken into account.

Conditions:

  • employee.id=declarations.employee_id
  • declarations.person_id=presons.id
  • employee.division_id=divisions.id
  • employee.employee_type='DOCTOR'
  • employee.is_active=true
  • employee.status='APPROVED'
  • declarations.is_active=true
  • declarations.status='active'
  • divisions.addresses.{type:"RESIDINCE"}


Fields:

SOURCEFIELDNAMEDESCRIPTION
employeelegal_entity_idlegal_entity_id
divisions

divisions.addresses.residence_settlement_type

residence_settlement_type


when type<>'CITY' then 'OTHER' else type
persons
count(authentication_methods.type='OFFLINE'.person_id)

offline_patients_qty

authentication_methods.type='OFFLINE'
personscount(authentication_methods.{type}='OFFLINE'.person_id)/count(person_id)ratio_offline_patients_qtyratio of patients with offline method of authorization within particular legal entity 
personscount(person_id)patients_qtyqty patients by legal entity (total till report date)

ЕСОЗ - публічна документація